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Vibration characteristics of rectangular plates continuous over full range line supports

or partial line supports have been studied by using a discrete method. Concentrated

loads with Heaviside unit functions and Dirac delta functions are used to simulate the

line supports. The fundamental differential equations are established for the bending

integral equations and using the trapezoidal rule of the approximate numerical

integration, the solution of these equations is obtained. Green function which is the

solution of deflection of the bending problem of plate is used to obtain the characteristic

equation of the free vibration. The effects of the line support, the variable thickness and

aspect ratio on the frequencies and mode shapes are considered. By comparing the

numerical results obtained by the present method with those previously published, the

efficiency and accuracy of the present method are investigated.

& 2009 Published by Elsevier Ltd.
1. Introduction

Plates continuous over intermediate supports have been used extensively in civil, aircraft and marine structures. The
vibration analysis of these plates is important for avoiding the resonance. According to the length of the supports, the
plates with straight line supports are divided into two kinds, one is plates continuous over full line supports and another is
plates continuous over partial line supports. For the plates with full line supports, the dynamic characteristics have been
investigated by using different methods. An approximate analytical method was used by Takahashi and Chishaki to
determine the vibration characteristics of plates continuous over full line supports in one direction [1] and in two
directions [2]. Numerical results were given for simply supported plates. The receptance method was used by Azimi et al.
[3] to analyze the free vibration of thin rectangular plates continuous over full line supports parallel to two simply
supported edges and with other two opposite edges clamped or simply supported. Numerical results were presented for
four-equal-span, four-unequal-span, three-equal-span and three-unequal-span plates. The other methods, such as the
Rayleigh–Ritz method [4,5], the finite strip method [6], the finite layer approach [7] and the L�evy method [8] were also
used. Lin and his cooperators [9,10] analyzed free vibration of a finite row of continuous skin-stringer panels and column-
supported cooling towers. Mead and Yaman [11,12] studied the harmonic response of rectangular sandwich plates with
multiple stiffening and beams on multiple linear supports. For the plates with partial line supports, the dynamic study of
these plates is rather limited. Xiang et al. [13] investigated the vibration behaviors of continuous rectangular plates by
using the discrete singular convolution algorithm. Some results for the rectangular plates continuous over partial internal
line supports were also presented. All of the above papers are limited to the plates with uniform thickness.
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In this paper, a discrete method [14] is expanded for analyzing the free vibration of rectangular plates with variable
thickness and continuous over full range line supports or partial line supports, which are simulated by concentrated loads
with Heaviside unit functions and Dirac delta functions. No prior assumption of shape of deflection used in the finite
element method is employed in this method. Basing the first shear deformation theory, the fundamental differential
equations of a plate involving Heaviside unit function and Dirac delta function are established. By transforming these
equations into integral equations and using numerical integration, the solutions are obtained at the discrete points.
Furthermore, by choosing the integral area in an appointed order, the solutions are only related to the unknown quantities
on the boundary and that makes the number of unknown quantities decrease greatly. The solution for deflection is chosen
as the Green function and used to obtain the characteristic equation of the free vibration. In this paper, the efficiency and
accuracy of the present method for the continuous rectangular plates are investigated, and some numerical results and
mode shapes are presented for the plate with variable thickness and continuous over full range and partial line supports.
2. Fundamental differential equations

Consider a rectangular plate of length a, width b, density r. An xyz coordinate system is used in the present study with
its x2y plane contained in the middle plane of the rectangular plate, the z-axis perpendicular to the middle plane of the
plate and the origin at one of the corners of the plate, as shown in Fig. 1.

In this paper, the concentrated loads with Heaviside unit functions and Dirac delta functions are used to simulate the
line supports. The deflection w, the rotations yx; yy, the shearing forces Qx;Qy, the twisting moment Mxy and the bending
moments Mx;My are used as variables.

As given in Ref. [15], the fundamental differential equations of the plate having a concentrated load P at a point ðxq; yrÞ,
the line support Rcðx; yÞ parallel to x-direction within the domain of xc1rxrxc2 and the line support Rdðx; yÞ parallel to
y-direction within the domain of yd1ryryd2 are as follows:

qQx

qx
þ
qQy

qy
þ Pdðx� xqÞdðy� yrÞ þ

Xm
c¼0

RcH½ðxc2 � xcÞðxc � xc1Þ�dðx� xcÞdðy� ydÞ

þ
Xn

d¼0

RdH½ðyd2 � ydÞðyd � yd1Þ�dðx� xcÞdðy� ydÞ ¼ 0; (1a)

qMxy

qx
þ
qMy

qy
� Qy ¼ 0; (1b)

qMx

qx
þ
qMxy

qy
� Qx ¼ 0; (1c)
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Fig. 1. Discrete points on a rectangular plate.
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qyx

qx
þ n qyy

qy
¼

Mx

D
; (1d)

qyy

qy
þ n qyx

qx
¼

My

D
; (1e)

qyx

qy
þ

qyy

qx
¼

2

ð1� nÞ
Mxy

D
; (1f)

qw

qx
þ yx ¼

Qx

Gts
; (1g)

qw

qy
þ yy ¼

Qy

Gts
; (1h)

where D ¼ Eh3=ð12ð1� n2ÞÞ is the bending rigidity; E and G are modulus and shear modulus of elasticity, respectively; n is
Poisson’s ratio; h is the thickness of plate; ts ¼ h=1:2; dðx� xqÞ, dðy� yrÞ, dðx� xcÞ and dðy� ydÞ are Dirac delta functions;
H½ðxc2 � xcÞðxc � xc1Þ� and H½ðyd2 � ydÞðyd � yd1Þ� are Heaviside unit functions.

By introducing the non-dimensional expressions,

½X1;X2� ¼
a2

D0ð1� n2Þ
½Qy;Qx�; ½X3;X4;X5� ¼

a

D0ð1� n2Þ
½Mxy;My;Mx�; ½X6;X7;X8� ¼ ½yy; yx;w=a�;

where D0 ¼ Eh3
0=ð12ð1� n2ÞÞ is the standard bending rigidity; h0 is the standard thickness of the plate, Eqs. (1a)–(1h) can be

expressed as the following simple equation system:

X8

s¼1

F1ts
qXs

qz
þ F2ts

qXs

qZ
þ F3tsXs

� �
þ PdðZ� ZqÞdðz� zrÞd1t þ

Xm

c¼0

RcH½ðZc2 � ZcÞðZc � Zc1Þ�dðZ� ZcÞdðz� zdÞd1t

þ
Xn

d¼0

RdH½ðzd2 � zÞðz� zd1Þ�dðZ� ZcÞdðz� zdÞd1t

¼ 0 ðt ¼ 1�8Þ; (2)

where P ¼ Pa=ðD0ð1� n2ÞÞ; Rc ¼ Rca=ðD0ð1� n2ÞÞ; Rd ¼ Rda=ðD0ð1� n2ÞÞ; dðZ� ZqÞ, dðz� zrÞ, dðZ� ZcÞ and dðz� zdÞ are Dirac
delta functions; H½ðZc2 � ZcÞðZc � Zc1Þ� and H½ðzd2 � zdÞðzd � zd1Þ� are Heaviside unit functions; F1ts; F2ts and F3ts are given in
Appendix A.

3. Discrete Green function

As given in Ref. [14], by dividing a rectangular plate vertically into m equal-length parts and horizontally into n equal-
length parts as shown in Fig. 1, the plate can be considered as a group of discrete points which are the intersections of the
(mþ 1)-vertical and (nþ 1)-horizontal dividing lines. To describe the present method conveniently, the rectangular area,
0rZrZi, 0rzrzj, corresponding to the arbitrary intersection ði; jÞ as shown in Fig. 1 is denoted as the area ½i; j�, the
intersection ði; jÞ denoted by � is called the main point of the area ½i; j�, the intersections denoted byˆare called the inner
dependent points of the area, and the intersections denoted by � are called the boundary dependent points of the area.

By integrating Eq. (2) over the area ½i; j� and applying the trapezoidal integration rule, the simultaneous equation for the
unknown quantities Xsij ¼ XsðZi; zjÞ at the main point ði; jÞ of the area ½i; j� is obtained as follows:

X8

s¼1

F1ts

Xi

k¼0

bikðXskj � Xsk0Þ þ F2ts

Xj

l¼0

bjlðXsil � Xs0lÞ þF3ts

Xi

k¼0

Xj

l¼0

bikbjlXskl

)(

þ Puiqujr þ
Xm

c¼0

RcHcuicujd þ
Xn

d¼0

RdHduicujd

!
d1t ¼ 0 ðt ¼ 1�8Þ;

 
(3)

where bik ¼ aik=m;bjl ¼ ajl=n; aik ¼ 1� ðd0k þ dikÞ=2; ajl ¼ 1� ðd0l þ djlÞ=2; i ¼ 1�m; j ¼ 1�n; uiq ¼ uðZi � ZqÞ;
ujr ¼ uðzj � zrÞ; uic ¼ uðZi � ZcÞ; ujd ¼ uðzj � zdÞ; Hc ¼ H½ðZc2 � ZcÞðZc � Zc1Þ�, Hd ¼ H½ðzd2 � zdÞðzd � zd1Þ�.

By retaining the quantities at main point ði; jÞ on the left hand side of the equation, putting other quantities on the right
hand side and using the matrix transition, the solution Xpij of the above Eq. (3) is obtained as follows:

Xpij ¼
X8

t¼1

Xi

k¼0

bikApt½Xtk0 � Xtkjð1� dikÞ� þ
Xj

l¼0

bjlBpt ½Xt0l � Xtilð1� djlÞ�þ
Xi

k¼0

Xj

l¼0

bikbjlCptklXtklð1� dikdjlÞ

)(

�Ap1 Puiqujr þ
Xm

c¼0

RcHcuicujdþ
Xn

d¼0

RdHduicujd

!
;

 
(4)

where p ¼ 1�8, Apt , Bpt and Cptkl are given in Appendix A.
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In Eq. (4), the quantity Xpij is not only related to the quantities Xtk0 and Xt0l at the boundary dependent points but also
the quantities Xtkj, Xtil and Xtkl at the inner dependent points. The maximal number of the unknown quantities is
6ðm� 1Þðn� 1Þ þ ð4mþ 4nþ 1Þ. In order to reduce the unknown quantities, the area ½i; j� is spread according to the regular
order as ½1;1�; ½1;2�; . . . ; ½1;n�; ½2;1�; ½2;2�; . . . ; ½2;n�; . . . ; ½m;1�; ½m;2�; . . . ; ½m;n�. With the spread of the area according to the
above mentioned order, the quantities Xtkj, Xtil and Xtkl at the inner dependent points can be eliminated by substituting the
obtained results into the corresponding terms of the right hand side of Eq. (4). By repeating this process, the quantity Xpij at
the main point is only related to the quantities Xrk0 (r ¼ 1;3;4;6;7;8) and Xs0l (s ¼ 2;3;5;6;7;8) at the boundary dependent
points. The maximal number of the unknown quantities is reduced to ð4mþ 4nþ 1Þ. It can be noted the number of the
unknown quantities of the present method is fewer than that of the finite element method for the same divisional number
mðZ3Þ and nðZ3Þ. Based on the above consideration, Eq. (4) is rewritten as follows:

Xpij ¼
X6

d¼1

Xi

f¼0

apijfdXrf 0 þ
Xj

g¼0

bpijgdXs0g

8<
:

9=
;þ qpijP þ

Xm

c¼0

q1pijcdRc þ
Xn

d¼0

q2pijcdRd; (5)

where apijfd, bpijgd, qpij, q1pijcd and q2pijcd are given in Appendix B.
Eq. (5) gives the discrete solution of the fundamental differential Eq. (2) of the bending problem of a plate with a

concentrated load and line supports, and the discrete Green function is chosen as X8ija
2=½PD0ð1� n2Þ�, that is

wðx0; y0; x; yÞ=P .

4. Characteristic equation

By applying the Green function wðx0; y0; x; yÞ=P which is the displacement at a point ðx0; y0Þ of a plate with a
concentrated load P at a point ðx; yÞ, the displacement amplitude ŵðx0; y0Þ at a point ðx0; y0Þ of the rectangular plate with
line supports during the free vibration is given as follows:

ŵðx0; y0Þ ¼

Z a

0

Z b

0
rho2ŵðx; yÞ½wðx0; y0; x; yÞ=P �dx dy (6)

where r is the mass density of the plate material.
By using the trapezoidal integration rule and the following non-dimensional expressions,

l4
¼
r0h0o2a4

D0ð1� n2Þ
; k ¼ 1=ðml4

Þ; HðZ; zÞ ¼ rðx; yÞ
r0

hðx; yÞ

h0
;

WðZ; zÞ ¼ ŵðx; yÞ

a
; GðZ0; z0;Z; zÞ ¼

wðx0; y0; x; yÞ

a

D0ð1� n2Þ

Pa
;

where a and b are the length and width of the plate, respectively; r0 is the standard mass density, the characteristic
equation is obtained from Eq. (6) as

K00 K01 K02 . . . K0m

K10 K11 K12 . . . K1m

K20 K21 K22 . . . K2m

^ ^ ^ & ^

Km0 Km1 Km2 . . . Kmm

������������

������������
¼ 0; (7)

where

Kij ¼ bmj

bn0Hj0Gi0j0 � kdij bn1Hj1Gi0j1 bn2Hj2Gi0j2 � � � bnnHjnGi0jn

bn0Hj0Gi1j0 bn1Hj1Gi1j1 � kdij bn2Hj2Gi1j2 � � � bnnHjnGi1jn

bn0Hj0Gi2j0 bn1Hj1Gi2j1 bn2Hj2Gi2j2 � kdij � � � bnnHjnGi2jn

^ ^ ^ & ^

bn0Hj0Ginj0 bn1Hj1Ginj1 bn2Hj2Ginj2 � � � bnnHjnGinjn � kdij

2
6666664

3
7777775

in which i ¼ 0;1; . . . ;m; j ¼ 0;1; . . . ;n.

5. Numerical results

To investigate the validity of the proposed method, numerical results are presented for several specific problems and
comparisons are made with previously published results. For the plates with variable thickness in one direction, the
thickness h changes according to h ¼ h0ð1þ ax=aÞ. In all tables and figures, the symbols F, S, and C denote free, simply
supported and clamped edges. Four symbols such as CSFS designate the boundary conditions of the plate, the first
indicating the conditions at x ¼ 0, the second at y ¼ 0, the third at x ¼ a and the fourth at y ¼ b. All the convergent values of
the frequency parameters are obtained for the plates by using Richardson’s extrapolation formula [16]. Some of the results
are compared with those reported previously.
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5.1. Two-span continuous plates

Fig. 2 shows the plate with two-span partial line supports. In this figure, the symbols a, b, c and d denote the length of
the plate, the width of the plate, the length of the line support parallel to x-direction and the length of the line support
parallel to y-direction, respectively. In order to examine the accuracy of the approach described, numerical results are
carried out for SSSS, SSCS and CSCS square plates with an one-way line support and SSSS, CCCC, CSCS and CSFS rectangular
plates with two-way line supports. These plates with full line supports are considered by choosing c=a ¼ 0; d=b ¼ 1 and
c=a ¼ 1; d=b ¼ 1, respectively. The lowest 10 frequency parameters for plates with an one-way support are presented in
Table 1. The lowest 4 frequency parameters are presented in Table 2 for plates with two-way supports and aspect ratio
b=a ¼ 0:5;1:0;1:5;2:0. The results of these plates obtained by Xiang et al. [13] are also shown in the two tables. It can be
seen these numerical results agree well.

The next example treated here is the square plates with two-way partial line supports with the partial line support.
Three cases of the partial line support c=a ¼ d=a ¼ 0, 0.4, 0.8 are considered. The numerical values for the lowest four
natural frequency parameter l of SSSS, CCCC and SSCS plates with partial line supports and with variable thickness
(a ¼ 0:1, 0.3, 0.5, 0.8) are given in Tables 3–5. From these tables, it can be noted that the frequency parameters increase
with the increase of the thickness. The boundary conditions affect the frequency parameters significantly. The nodal
patterns of the first four modes of SSSS square plates with c=a ¼ d=a ¼ 0;0:4;0:8, a ¼ 0:1;0:5;0:8 are shown in Fig. 3. From
Fig. 3, it can be seen that the effects of the changes of the thickness on the nodal patterns are prominent. With the increase
of the thickness, the vertical straight line becomes curve line for the plate with c=a ¼ 0, the new vertical nodal line will
appear in the thinner part of the plate with c=a ¼ 0:8 for third and fourth modes.

In order to investigate the effect of the length of the line support on the frequency parameters, the numerical results are
presented for SSSS square plate with uniform thickness. The lowest four frequency parameters versus the ratio of the length
of line support and the side of the plate are shown in Fig. 4. It can be found the changes of the lowest four frequency
parameters with the increase of the ratio c=a are different. When c=a increases from 0 to 0.2, the first, second and third
frequency parameters increase, but the fourth frequency parameter keeps constant. When c=a increases from 0.2 to 0.3, all
a

b

x

y

a/2

b/2

c/2c/2

d/2

d/2

Fig. 2. Rectangular plate with two-way partial line supports.

Table 1

Natural frequency parameter l for square plates with an one-way full line support (h=a ¼ 0:01;a ¼ 0:0).

Mode sequence number Boundary conditions

SSSS SSCS CSCS

Present Ref. [13] Present Ref. [13] Present Ref. [13]

1st 7.19 7.19 7.59 7.60 8.51 8.53

2nd 8.52 8.53 9.34 9.34 9.94 9.96

3rd 9.09 9.10 9.48 9.51 9.96 9.99

4th 9.95 9.96 10.65 10.66 10.99 11.01

5th 11.57 11.60 11.72 11.74 12.09 12.12

6th 12.10 12.12 12.55 12.58 12.77 12.80

7th 13.16 13.26 13.64 13.76 14.62 14.72

8th 14.29 14.39 14.38 14.48 14.73 14.78

9th 14.29 14.39 14.67 14.80 14.93 15.15

10th 14.63 14.72 14.91 15.01 15.50 15.68
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Table 2

Natural frequency parameter l for rectangular plates with two-way full line supports (h=a ¼ 0:01;a ¼ 0:0).

B:C b=a Ref. Mode sequence number

1st 2nd 3rd 4th

SSSS 0.5 Present 14.36 14.71 17.01 17.21

1.0 Present 9.09 9.95 9.95 10.64

Ref. [13] 9.10 9.96 9.96 10.65

1.5 Present 7.73 8.08 8.90 9.14

2.0 Present 7.19 7.36 8.52 8.63

CCCC 0.5 Present 17.20 17.48 20.00 20.19

1.0 Present 10.63 11.53 11.53 12.26

Ref. [13] 10.65 11.55 11.55 12.29

1.5 Present 9.13 9.46 10.40 10.63

2.0 Present 8.62 8.76 10.04 10.14

SSCS 0.5 Present 14.45 14.99 17.06 17.40

1.0 Present 9.34 10.14 10.65 11.24

Ref. [13] 9.34 10.15 10.66 11.25

1.5 Present 8.07 8.39 9.79 9.98

2.0 Present 7.59 7.74 9.32 9.49

CSFS 0.5 Present 13.16 14.87 15.99 16.18

1.0 Present 7.13 8.47 10.25 10.89

1.5 Present 5.32 6.05 9.06 9.14

2.0 Present 4.53 4.96 7.12 7.75

Table 3

Natural frequency parameter l for SSSS square plates with two-way partial line supports and variable thickness ðh=a ¼ 0:01; d=a ¼ c=aÞ.

c=a a Ref. Mode sequence number

1st 2nd 3rd 4th

0 0.1 Present 7.36 7.36 7.64 9.31

0.3 Present 7.64 7.69 8.04 9.73

0.5 Present 7.89 7.99 8.44 10.13

0.8 Present 8.23 8.41 8.99 10.70

0.4 0.1 Present 9.31 9.94 9.98 10.38

0.3 Present 9.64 10.26 10.53 10.97

0.5 Present 9.92 10.52 11.07 11.57

0.8 Present 10.30 10.88 11.85 12.42

0.8 0.1 Present 9.31 10.16 10.19 10.94

0.3 Present 9.65 10.53 10.74 11.52

0.5 Present 9.95 10.82 11.28 12.13

0.8 Present 10.34 11.20 12.06 13.01

Table 4

Natural frequency parameter l for CCCC square plates with two-way partial line supports and variable thickness (h=a ¼ 0:01; d=a ¼ c=a).

c=a a Ref. Mode sequence number

1st 2nd 3rd 4th

0 0.1 Present 8.96 8.97 9.34 10.89

0.3 Present 9.27 9.36 9.85 11.38

0.5 Present 9.53 9.72 10.36 11.83

0.8 Present 9.88 10.22 11.09 12.47

0.4 0.1 Present 10.87 11.69 11.73 12.31

0.3 Present 11.26 12.06 12.36 13.01

0.5 Present 11.58 12.37 13.00 13.71

0.8 Present 12.00 12.78 13.92 14.71

0.8 0.1 Present 10.87 11.78 11.82 12.57

0.3 Present 11.27 12.18 12.45 13.27

0.5 Present 11.59 12.51 13.08 13.96

0.8 Present 12.02 12.95 14.00 14.96

M. Huang et al. / Journal of Sound and Vibration 329 (2010) 485–496490
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Table 5

Natural frequency parameter l for SSCS square plates with two-way partial line supports and variable thickness (h=a ¼ 0:01; d=a ¼ c=a).

c=a a Ref. Mode sequence number

1st 2nd 3rd 4th

0 0.1 Present 7.47 7.52 8.58 9.72

0.3 Present 7.75 7.81 9.08 10.15

0.5 Present 7.96 8.12 9.54 10.56

0.8 Present 8.27 8.54 10.18 11.12

0.4 0.1 Present 9.45 10.02 10.75 11.20

0.3 Present 9.72 10.29 10.53 11.41

0.5 Present 9.98 10.54 12.03 12.57

0.8 Present 10.33 10.89 11.91 13.49

0.8 0.1 Present 9.49 10.30 10.98 11.60

0.3 Present 9.77 10.60 11.65 12.30

0.5 Present 10.03 10.86 12.28 12.97

0.8 Present 10.39 11.24 13.16 13.90

� = 0.1

� = 0.5

� = 0.8

� = 0.1

� = 0.5

� = 0.8

� = 0.1

� = 0.5

� = 0.8

c/a = 0

c/a = 0.4

c/a = 0.8

Fig. 3. Nodal patterns for SSSS square plates with two-way partial line supports and variable thickness (h=a ¼ 0:01; d=a ¼ c=a).

M. Huang et al. / Journal of Sound and Vibration 329 (2010) 485–496 491
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the frequency parameters increase. When c=a increases from 0.3 to 0.5, the first frequency parameter keeps constant, the
second, third and fourth frequency parameters increase. When c=a is larger than 0.5, the frequency parameters almost keep
constant. It can also be found that the lowest four frequency parameters are very close for the plate with the ratio c=a ¼ 0:2.
5.2. One-way three-span continuous plates

Fig. 5 shows the one-way three-equal-span SSSS rectangular plate continuous over partial line supports parallel to the
y-direction. The plate passes over partial line supports at x ¼ a=3 and 2a=3 and has aspect ratio b=a ¼ 1=3. The simply
supported boundary condition is considered. The lowest four frequency parameters are listed in Table 6 for the plates with
7

8

9

 10

 11

 12

 13

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

c/a

1st
2nd
3rd
4th

λ

Fig. 4. The frequency parameters versus the ratio c=a of the length of line support and the side of SSSS square plate with two-way partial line supports

(d=a ¼ c=aÞ.

a

a / 3a / 3

a / 3

a / 6
c / 2

c / 2c / 2

c / 2

x

y

Fig. 5. One-way three-equal-span rectangular plate with partial line supports parallel to the y-direction.

Table 6

Natural frequency parameter l for one-way three-equal-span SSSS rectangular plates with partial line supports parallel to the y-direction (h=a ¼ 0:01).

c=a a Ref. Mode sequence number

1st 2nd 3rd 4th

0 0 Present 13.66 14.20 15.30 19.96

0.1 Present 13.95 14.58 15.69 20.41

0.5 Present 14.64 16.16 17.31 21.67

1/9 0.0 Present 13.66 14.27 15.58 21.91

0.1 Present 13.95 14.65 15.98 22.22

0.5 Present 14.67 16.24 17.59 22.96

1/3 0.0 Present 13.66 14.28 15.60 21.91

Ref. [3] 13.68 14.31 15.70 21.64

0.1 Present 13.95 14.66 16.00 22.24

0.5 Present 14.67 16.25 17.61 22.98
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c/a = 0

c/a = 1/9

c/a = 1/3

� = 0.1

� = 0.5

� = 0.0

� = 0.1

� = 0.5

� = 0.0

� = 0.1

� = 0.5

Fig. 6. Nodal patterns for one-way three-equal-span SSSS rectangular plates with partial line support parallel to the y-direction.

a

a/4a/4

a/4

a / 8c / 2

c / 2

c / 2

c / 2

x

y

Fig. 7. One-way three-unequal-span SSSS rectangular plate with partial line supports parallel to the y-direction.

Table 7

Natural frequency parameter l for one-way three-unequal-span SSSS rectangular plate with partial line supports parallel to the y-direction (h=a ¼ 0:01).

c=a a Ref. Mode sequence number

1st 2nd 3rd 4th

0 0.0 Present 14.74 18.18 18.86 19.55

0.5 Present 16.43 19.41 21.00 22.51

0.8 Present 17.32 19.82 22.26 24.56

1/12 0.0 Present 14.76 18.18 18.95 19.75

0.5 Present 16.46 19.46 21.12 22.68

0.8 Present 17.35 19.90 22.38 24.68

1/4 0.0 Present 14.77 18.18 18.96 19.77

Ref. [3] 14.76 18.25 19.06 19.97

0.5 Present 16.46 19.47 21.13 22.70

0.8 Present 17.35 19.91 22.38 24.67
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c=a ¼ 0;1=9;1=3 and variable thickness a ¼ 0;0:1;0:5. The results obtained by Azimi et al. [3] are also shown in this table.
The nodal patterns of the first four modes of these plates are shown in Fig. 6.

Fig. 7 shows the one-way three-unequal-span SSSS rectangular plate with partial line supports parallel to the y-
direction. The plate passes over partial line supports at x ¼ a=4 and 3a=4 and has aspect ratio b=a ¼ 1=4. The simply
supported boundary condition is considered. The lowest four frequency parameters are listed in Table 7 for the plates with
c=a ¼ 0;1=12;1=4 and variable thickness a ¼ 0;0:5;0:8. The results obtained by Azimi et al. [3] are also shown in this table.
The nodal patterns of the first four modes of these plates are shown in Fig. 8. The mode shapes of the plate with c=a ¼ 1=4
are very close to the exact mode shapes presented by Azimi et al. [3].
c/a = 0

c/a = 1/12

c/a = 1/4

� = 0.0

� = 0.5

� = 0.8

� = 0.0

� = 0.5

� = 0.8

� = 0.0

� = 0.5

� = 0.8

Fig. 8. Nodal patterns for one-way three-unequal-span SSSS rectangular plate with partial line supports parallel to the y-direction.

Table 8

Natural frequency parameter l for three-ply symmetrically laminated CCCC square plates (0̂=90̂=0̂) with two-span partial line supports and variable

thickness (h=a ¼ 0:01).

Case d=a a Ref. Mode sequence number

1st 2nd 3rd 4th

One-way 0.5 0.0 Present 19.32 19.76 20.65 21.92

0.3 Present 20.51 20.94 21.92 23.38

0.5 Present 21.15 21.55 22.59 23.97

0.8 Present 21.98 22.35 23.45 24.71

1.0 0.0 Present 19.32 19.76 20.65 22.40

0.3 Present 20.51 20.95 21.94 23.71

0.5 Present 21.16 21.58 22.67 24.31

0.8 Present 21.98 22.41 23.55 25.16

Two-way 0.5 0.0 Present 19.76 20.02 21.92 22.14

0.3 Present 20.94 21.26 23.38 23.79

0.5 Present 21.55 21.93 23.97 24.45

0.8 Present 22.35 22.77 24.71 25.70

1.0 0.0 Present 19.76 20.02 22.40 23.16

0.3 Present 20.95 21.28 23.71 24.71

0.5 Present 21.58 21.98 24.31 25.73

0.8 Present 22.41 22.83 25.16 27.17
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5.3. Two-span continuous symmetrically laminated plates

At last, natural frequency parameters are given for three-ply symmetrically laminated CCCC square plates ð0̂=90̂=0̂Þwith
variable thickness. The following plate parameters are adopted: E1=E2 ¼ 40:0, G12=E2 ¼ 0:6, n12=E2 ¼ 0:25. Here, E1 is the
axial modulus in 1-direction, E2 is the axial modulus in 2-direction, G12 is the shear modulus in 1–2 planes, n12 is the
Poisson’s ratio associated with loading in the 1-direction and strain in the 2-direction. Some numerical results are given for
one-way two-span and two-way two-span plates with partial and full supports by choosing c=a ¼ 0 and d=a ¼ 0:5, c=a ¼ 0
and d=a ¼ 1, c=a ¼ d=a ¼ 0:5, and c=a ¼ d=a ¼ 1:0, as shown in Fig. 3. These numerical results are presented in Table 8.

6. Conclusions

A discrete method is proposed for analyzing the free vibration problem of rectangular plate continuous over full range
line supports or partial line supports. No prior assumption of shape of deflection used in the finite element method is
employed in this method. Concentrated loads with Heaviside unit functions are used to simulate the line supports. The
characteristic equation of the free vibration is obtained by using the Green function. The effects of the line support, the
variable thickness and aspect ratio on the frequencies are considered. Some results by the present method have been
compared with those previously reported. It shows that the present results have a good convergence and satisfactory
accuracy.

Appendix A

m ¼ b=a; I ¼ mð1� n2Þðh0=hÞ3; J ¼ 2mð1þ nÞðh0=hÞ3; T ¼ ðð1þ nÞ=5Þðh0=aÞ2ðh0=hÞ;

F111 ¼ F124 ¼ F133 ¼ F156 ¼ F167 ¼ F188 ¼ 1; F146 ¼ n; F212 ¼ F223 ¼ F235 ¼ F247 ¼ F266 ¼ m;
F257 ¼ mn; F278 ¼ 1; F321 ¼ F332 ¼ �m; F345 ¼ F354 ¼ �I; F363 ¼ �J; F372 ¼ �T; F377 ¼ 1;

F381 ¼ �mT; F386 ¼ m;other Fkts ¼ 0:
Ap1 ¼ gp1;Ap2 ¼ 0;Ap3 ¼ gp2;Ap4 ¼ gp3;Ap5 ¼ 0;

Ap6 ¼ gp4 þ ngp5;Ap7 ¼ gp6;Ap8 ¼ gp7;

Bp1 ¼ 0;Bp2 ¼ mgp1;Bp3 ¼ mgp3;Bp4 ¼ 0;

Bp5 ¼ mgp2;Bp6 ¼ mgp6;Bp7 ¼ mðngp1 þ gp5Þ;Bp8 ¼ gp8;

Cp1kl ¼ mðgp3 þ kklgp7Þ;Cp2kl ¼ mgp2 þ kklgp8;

Cp3kl ¼ Jgp6;Cp4kl ¼ Iklgp4;Cp5kl ¼ Iklgp5;

Cp6kl ¼ �mgp7;Cp7kl ¼ �gp8;Cp8kl ¼ 0; ½gpk� ¼ ½gpk�
�1;

g11 ¼ bii; g12 ¼ mbjj; g22 ¼ �mbij; g23 ¼ bii; g25 ¼ mbjj;

g31 ¼ �mbij; g33 ¼ mbjj; g34 ¼ bii; g44 ¼ �Iijbij; g46 ¼ bii;

g47 ¼ mnbjj; g55 ¼ �Iijbij; g56 ¼ nbii; g57 ¼ mbjj; g63 ¼ �Jijbii;

g66 ¼ mbjj; g67 ¼ bii; g71 ¼ �mkijbij; g76 ¼ mbij; g78 ¼ bii; g82 ¼ �Hijbij;

g87 ¼ bij; g88 ¼ bjj;other gpk ¼ 0;bij ¼ biibjj:

Appendix B

a1i0i1 ¼ a3i0i2 ¼ a4i0i3 ¼ 1; a6i0i4 ¼ a7i0i5 ¼ a8i0i6 ¼ 1

b20jj1 ¼ b30jj2 ¼ b50jj3 ¼ 1; b60jj4 ¼ b70jj5 ¼ b80jj6 ¼ 1; b30002 ¼ 0

apijfd ¼
X8

t¼1

Xi

k¼0

bikApt½atk0fd � atkjfdð1� dkiÞ�

(

þ
Xj

l¼0

bjlBpt ½at0lfd � atilfdð1� dljÞ�

þ
Xi

k¼0

Xj

l¼0

bikbjlCptklatklfdð1� dkidljÞ

)
bpijgd ¼

X8

t¼1

Xi

k¼0

bikApt ½btk0gd � btkjgdð1� dkiÞ�

(

þ
Xj

l¼0

bjlBpt ½bt0lgd � btilgdð1� dljÞ�

þ
Xi

k¼0

Xj

l¼0

bikbjlCptklbtklgdð1� dkidljÞ

)

qpij ¼
X8

t¼1

Xi

k¼0

bikApt ½qtk0 � qtkjð1� dkiÞ�

(
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þ
Xj

l¼0

bjlBpt½qt0l � qtilð1� dljÞ�þ
Xi

k¼0

Xj

l¼0

bikbjlCptkl � Ap1uiqujr

)

q1pijcd ¼
X8

e¼1

Xi

k¼0

bikApe½q1ek0cd � q1ekjcdð1� dkiÞ�

(

þ
Xj

l¼0

bjlBpe½q1e0lcd � q1eilcdð1� dljÞ�

þ
Xi

k¼0

Xj

l¼0

bikbjlCpeklq1eklcdð1� dkidljÞ

)
� Ap1Hcuicujd

q2pijcd ¼
X8

e¼1

Xi

k¼0

bikApe½q2ek0cd � q2ekjcdð1� dkiÞ�

(

þ
Xj

l¼0

bjlBpe½q2e0lcd � q2eilcdð1� dljÞ�

þ
Xi

k¼0

Xj

l¼0

bikbjlCpeklq2eklcdð1� dkidljÞ

)
� Ap1Hduicuid:
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